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Executive Summary 
Five reinforced concrete slab bridges were tested during the summer of 2015 by the University 
of Maine (UMaine) as part of this program: 1. Weld No. 5361, 2. West Paris No. 2582, 
3. Wiscasset/ Woolwich No. 2577, 4. Penobscot No. 3297, and 5. Smyrna No. 2250. Revised 
load ratings were computed using either test data or with more detailed analyses than provided to 
UMaine by the Maine Department of Transporation (MaineDOT). Testing instrumentation 
setups, loading setups, and strain plots for each bridge are provided in Appendices A.1, A.2, A.3, 
A.4, and A.5. The results of the tests and analyses are summarized below and compared with the 
existing ratings. Use of the these revised load ratings, live load test data, and extrapolation of 
these results to other structures is at the sole discretion of the bridge owner. 

1. Weld No. 5361: Although the clear span of this bridge was longer than the others tested, 
measured strains on this bridge were among the lowest. Based on revised analysis of the 
bridge for one truck at a time, positive moment at midspan, for HL-93 the inventory rating 
was found to be 1.47 when using the SlabRate finite-element program. 

2. West Paris No. 2582: Based on existing geometry with the original and widened slabs each 
supporting a lane with very little interaction, MaineDOT may choose to focus on single lane 
rating factors. Analyzing the widened slab with one lane loaded and based on strains 
measured in testing, the rating factors were found to increase from 0.75 to 1.17 for HL-93 
inventory loading and from 0.97 to 1.51 for HL-93 operating loading. 

3. Wiscasset/ Woolwich No. 2577: Low loads compared to HL-93 + impact were applied by  
the crane used to load the structure. MaineDOT may choose to upgrade the rating factor 
despite these low loads based on assumptions discussed futher in Section 2.3.  

4. Penobscot No. 3297: The geometry of this bridge, with an original slab in the center and 
widened portions on both sides holding sidewalks with curbs and guardrails, required several 
sets of assumptions to be considered in the revised rating factors. These sets of assumptions, 
including boundary conditions between the old and new slabs, concrete wearing surface 
thickness, and reinforcing are further discussed in Section 2.4.2. 

5. Smyrna No. 2250: The new widened portion of the road was analyzed, and the predicted 
strains were significantly greater than measured strains, with a minimum ratio of 
predicted/ measured of 2.02. However, due to the low loads compared to HL-93 + impact, no 
rating factor recommendation is made. 
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1 Bridge Testing Program 
Five slab type reinforced concrete bridges were tested during the summer of 2015 as part of this 
program: 1. Weld No. 5361, 2. West Paris No. 2582, 3. Wiscasset/ Woolwich No. 2577, 
4. Penobscot No. 3297, and 5. Smyrna No. 2250. Bridges were instrumented with a strain 
measuring system, loaded with heavy vehicular loads, and then analyzed to determine whether it 
may be reasonable to change the bridge rating factors based on the testing and refined analysis. 

1.1 Instrumentation 

The strain measurement system utilized in this research is a partially Wireless Structural Testing 
System (STS-WiFi) by Bridge Diagnostics Inc. (BDI). The system used for this testing utilized a 
mobile base station to communicate with up to 6 nodes with up to 4 strain sensors per node and 
an additional autoclicker node for monitoring tire rotation of loading vehical. This system 
communicated with a dedicated laptop running BDI specific WinSTS data acquisition software. 
This system was fully verified in the laboratory prior to use in the field. This verification 
consisted of first mounting the gages to steel spacers utilized in calibrated tension testing servo-
hydraulic Instron actuators and verifying that measured strains were as predicted. Next, the 
system was utilized to instrument a 35 ft. long concrete beam undergoing bending testing. Strains 
were predicted utilizing both mechanics based calculations and advanced three-dimensional 
finite element analysis, and matched measured strains well.  A sample setup in the field is shown 
in Figure 1, with strain sensors mounted under the bridge at mid-span connected to battery 
operated wireless nodes connected to the guardrail. A clear diagram of the entire network is 
shown in Figure 2 including strain sensors, wireless nodes, the wirelss base station, autoclicker, 
and the data recording laptop. 

 

Figure 1: Typical strain sensors mounted under bridge connected to wireless nodes 

Wireless Nodes

Strain Gages Mounted 
Under Bridge
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Figure 2: BDI STS‐Wifi network setup for bridge sensor setup. 

Strain sensors were mounted under the bridges using a MaineDOT Under Bridge Inspection 
Truck (UBIT) as shown in Figure 3. The sensors were mounted to the concrete by first grinding 
the concrete to a fresh surface, cleaning the surface, then using the recommended concrete 
adhesive to connect the strain sensor tabs to the concrete. Strain sensor layout was optimized for 
each bridge, with individual sensor layouts shown in the appendicies. 

 

Figure 3: MaineDOT UBIT utilized to install sensors 
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1.2 Loading 

The crane used for this testing was a Grove TMS900E as shown in Figure 4. The crane was 
weighed using state patrol certified portable scales as shown in Figure 5. Each test was run with 
crane moving both directions on each side of the road in optimized load paths as is detailed in the 
appendicies. In general, this was as close to the curb on both sides as possible to maximize the 
moment along the free edge of the bridge. The autoclicker was utilized to create marks in the 
data acquisition system at each wheel rotation to determine the vehicle location during the test, 
and the setup is shown in Figure 6. 

 

Figure 4: Grove TMS 900E crane used for bridge loading 

 

Figure 5: State highway patrol certified portable crane scales  used to verify vehicle weight for each test 
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Figure 6: Autoclicker setup to measure wheel rotations for data analysis 

1.3 Analysis 

Analysis of the bridges tested is described in detail in Section 2. In general, hand calculations 
based on mechanics of materials principles, American Association of State Highway and 
Transportation Officials (AASHTO) code requirements including the Manual for Bridge 
Evaluation (AASHTO MBE) were first conducted. Finite element modeling is conducted where 
required utilizing SlabRate software, a custom program written in MATLAB by the project PI. 

2 Analysis of Live Load Test Data 

2.1 Weld No. 5361 

The highest measured strain recorded from the live load test of Weld No. 5361 was 34 με, which 
is low relative to the other four bridges tested. While the bridge has the longest clear span of all 
tested slabs at 360 in, the 19 in thick structural slab was likely stiffened by the additional 3 in 
concrete wearing surface noted on the plans. A review of the load rating analysis performed by 
the MaineDOT using input values from a load rating conducted independently by a consultant 
showed the main reinforcing steel as 1.25 in diameter bars spaced at 7.75 in on center, giving a 
steel area of 1.9 in2/ft. The MaineDOT load rating conducted per SlabRate yielded an HL-93 
inventory rating of 0.91. However, the plans indicate #11, 1.25 in square bars with a cross-
sectional area of 1.56 in2 each. Further, the bar spacing of 7.75 shown on the plans is along the 
30 degree skew, and the actual bar spacing parallel to the span is 6.71 in. Therefore, the actual 
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steel area is 2.79 in2/ft. This increases the HL-93 inventory rating to 1.47 when using the 
SlabRate finite-element program. No further analyses were completed given that Weld No. 5361 
appears to be in excellent condition, as shown in Figure 7 and has an inventory rating factor 
substantially greater than one. 

 

Figure 7: Weld No. 5361 general condition 

2.2 West Paris No. 2582 

2.2.1 Finite-Element Analysis of West Paris No. 2582 and Comparison with Field Data 

The highest measured strains were recorded during Test 08 in the widened portion of the 
structure. This is consistent with the thinner slab (16.5 in) in the widened portion compared with 
the original 20 in slab. The two slabs are separated by a cold joint containing a bond breaker as 
shown in Figure 8, and therefore should behave largely independently. This was confirmed by 
the very small measured strains in the original portion of the structure when the widened portion 
was loaded. The finite-element analysis of the slab was thus performed for the critical, widened 
portion of the structure only. The slab width tapers from 18 ft 7 in to 20 ft 7 in with a 1 ft curb. 
An average overall width of 19 ft 7 in was assumed for all analyses, and the effect of the 
thickened curbs was not modeled. A full-depth, un-cracked section was assumed for all analyses, 
which is consistent with the small measured longitudinal strains of less than 40 με. The model 
had 20 elements in both the longitudinal and transverse directions, and strains were interpolated 
at the gauge locations using nodal values output by the model. 
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Figure 8: West Paris No. 2582 joint and general condition 

The AASHTO MBE recommends that the concrete strength be taken as 2.5 ksi based on the 
1951 construction date. However, it is likely that the actual strength is significantly greater than 
the nominal value of 2.5 ksi. Further, a lower-than-actual concrete strength will lead to higher 
model-predicted strains, which is unconservative when computing a rating factor modifier per 
the AASHTO MBE. Therefore, the concrete compressive strength was assumed to be 4 ksi with 
a corresponding elastic modulus of 3600 ksi. 

Strains were computed assuming isotropic, thin plate theory, which accounts for the effect of 
both longitudinal and transverse bending moments. Figure 9 shows the model-predicted strains 
as a function of truck position at the locations of the gauges installed on the bottom of the slab at 
mid-span. 
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Figure 9: Finite‐element predicted strains for West Paris No. 2582 

The relative magnitudes of the predicted strains are in good qualitative agreement with measured 
strains. One discrepancy is that the largest measured strains occurred at gauge 3063, whereas the 
model predicts the largest measured strains at gauge locations 3064 and 3065. This could be due 
to the integral concrete curb that is nearest to gauges 3064 and 3065, the effect of which is not 
captured by the finite-element model. To quantify the discrepancy between the FE model-
predicted strain εc and measured strain εT, peak values for each and the ratio εT/εc are presented in 
Table 1 for each gauge location. 

Table 1: Peak measured and model‐predicted strains for West Paris No. 2582 

Gauge Location Measured Peak εT (με) Predicted Peak εc (με) εc/εT 
3065 38.3 98.0 2.56 
3064 35.7 98.3 2.75 
3063 39.6 84.3 2.13 
3067 35.0 85.1 2.43 
3076 20.9 68.1 3.26 
3075 17.3 58.2 3.36 
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2.2.2 Modification of Single-Lane Rating Factor for West Paris Bridge No. 2582 

An independent HL-93 operating load rating was completed by the MaineDOT for the widened 
portion of the West Paris bridge using the finite-element software SlabRate. According to the 
AASHTO MBE, a bridge with a roadway width of between 18 ft and 20 ft must be rated for two 
lanes of loading. The roadway width for the widened version of the West Paris slab varies from 
17 ft 7 in to 19 ft 7 in, giving an average of 18 ft 7 in. However, the entire bridge has a roadway 
width of 40 ft, and is striped for only two lanes with 8 ft shoulders. Therefore, under current 
traffic conditions, one lane is entirely on the widened portion of the structure. Further, the 
interior edge of the slab near the lane edge is thickened, and the exterior slab edge has an integral 
curb. This implies that critical rating factors computed per the rating analysis at the slab edges 
will be conservative. Given these geometric considerations and the current striped lanes on the 
bridge, the MaineDOT may want to focus only on the rating corresponding to a single lane of 
loading, for which the HL-93 inventory and operating rating factors are 0.75 and 0.97, 
respectively. 

A quick calculation of the maximum simple-span, single-lane bending moment produced by the 
crane used to test the West Paris structure gives a moment of 257 ft-kips per lane of loading (the 
calculation conservatively ignored the small contribution from the rear trailer axle). The moment 
due to an HL-93 tandem with impact plus lane load is 300 ft-kips for the same 20 ft 1 in span. 
Thus, the crane used to load the structure applied 257/(1.2*300) = 0.71 of an HL-93 service load 
with impact, after accounting for the single-lane multiple presence factor of 1.2. Assuming 
results cannot be extrapolated to higher loads, this corresponds to a Kb of 0.5 per Table 8.8.2.3.1-
1 of the AASHTO MBE. The value of Ka is computed per AASHTO as εc /εT – 1, which is 1.13 
based on the most conservative ratio of computed to measured strain given in Table 1. The rating 
factor adjustment K = 1 + KaKb = 1 + 0.5*1.13 = 1.56, implying that the HL-93 inventory and 
operating rating factors for a single lane of loading can be increased to 1.17 and 1.51, 
respectively. 

2.3 Finite-Element Analysis of Wiscasset/ Woolwich No. 2577 and Comparison 
with Field Data 

For load tests of bridge No. 2577, the crane produced only 62% of a single lane of HL-93 live 
loading with impact. As discussed previously, the measured strains were quite low (less than 20 
με maximum positive strain for all loadings). This is likely due to several factors. First, the 
bridge has approximately 20 inches of fill over the top of the slab, which will tend to spread the 
wheel loads significantly. Secondly, the crane was not placed as close to the slab edge as in other 
tests. Third, the crane’s heavy axles were relatively light for this test compared to the test at 
Weld and West Paris. Finally, the exterior edge of the slab, to which the crane was placed closest 
for the slow speed passes, has a significant integral curb. The general condition is shown in 
Figure 10. The effectiveness of this integral curb in carrying moments at the slab edge is 
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reflected in the large negative strains that developed in the gauge mounted on the top of the curb, 
especially in the newer (widened) portion of the slab as shown in Figure 11. 

 

Figure 10: Woolwich No. 2577 showing integral curb and fill thickness 

 

Figure 11: Woolwich No. 2577, test 11 

A finite-element analysis of the newer portion of the structure was conducted for comparison 
with the field data gathered during test 11. The newer portion was chosen for comparison 
because it is narrower than the original structure, and therefore strains were more uniform across 
the width of the slab. The model had 20 elements in both the longitudinal and transverse 
directions, and strains were interpolated at the gauge locations using nodal values output by the 
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model. Given the small measured strains, the gross un-cracked section was used for all 
calculations. 

Figure 12 shows predicted strains at the bottom of the slab. The model shows the largest strains 
at gages 3064, 3065, 3066 and 3067, which is generally consistent with the field data. The truck 
was positioned such that a wheel line traveled over gauges 3066 and 3067. One discrepancy is 
that the model predicts the largest strain at the location of gauge 3064, whereas peak strain was 
measured during the test at gauge 3067. However, comparison of the measured and predicted 
strains indicates that the FE model is consistently over-predicting the measured strains, which 
were a maximum of 20 με. This indicates there is potentially a significant degree of conservatism 
in the finite-element model. 

 

Figure 12: Finite‐element predicted strains for Wiscasset/ Woolwich No. 2577 

Despite the relatively small measured strains, the AASHTO MBE does not allow rating factors 
to be increased directly based on measured strains as could be done with bridge No. 2582 
because of the relatively low load level and the uncertainty associated with extrapolating strains 
to larger loads. However, the low measured strains and service conditions may allow a revised 
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load rating to be conducted at the discretion of the MaineDOT. To explore this further, UMaine 
performed a load rating on the older, more critical structure with the following assumptions: 

1. The original structure is assumed to carry only a single lane of loading. This is based on the 
existing lane striping, which will prevent a second lane of traffic from significantly loading 
the original structure under normal usage. The strain data gathered with the crane driving in 
traffic substantiates this: when the truck traveled down each lane with traffic, hugging the 
bridge centerline, the adjacent structure experienced small strains. 

2. The tire contact width can be increased 20 inches, or the fill depth, in both the longitudinal 
and transverse directions. The increase in contact area parallel to the traffic direction is 
explicitly permitted by Chapter 4 of the AASHTO Load and Resistance Factor Design 
(LRFD) Specification for buried box culverts having less than 2 feet of fill. It is assumed that 
the same increase applies perpendicular to the traffic direction. Thus, the AASHTO standard 
10 inch long by 20 inch wide tire patch will be increased to 30 inches long by 40 inches 
wide. 

3. The critical location for load rating will be assumed near the slab edge closest to the bridge 
centerline. The plans show that the 18 inch wide integral curb was left protruding 
approximately 12 inches above the top of the slab during widening. This existing curb 
section will substantially strengthen and stiffen the structure at this location; however, this 
thickened curb has not been taken into account in the initial revised load rating. 

Using these assumptions, the SlabRate analysis predicts an HL-93 operating rating of 0.921. For 
comparison, an otherwise identical single-lane rating analysis assuming a conventional wheel 
load patch of 10 inches by 20 inches that was positioned entirely on the slab at its interior edge 
yielded an HL-93 operating rating factor of 0.752. 

The critical location for the rating factor is, as expected, at the interior slab edge. However, this 
edge has a buried integral curb, which will increase capacity at this location. To explore this, an 
additional rating was conducted using the above assumptions, but the SlabRate FE model was 
modified to incorporate 32 inch thick, 18 inch wide elements at each slab edge to capture the 
effect of the thickened curb. The thickened curb sections are significantly stiffer than the slab 
alone, and tend to increase moments substantially at the slab edge. This is illustrated in Figure 13 
with scaled color maps of HL-93 tandem with impact plus lane load moments in the constant 
thickness slab and the slab with thickened edge elements that account for the curb.  

                                                 
1 Wisscasset/ Woolwich No. 2577: Assumption set 1 
2 Wisscasset/ Woolwich No. 2577: Assumption set 2 
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Figure 13: Effect of integral curb on predicted slab moments 

The largest moments will in general be carried by the section of slab plus curb. A hand 
calculation was performed assuming the combined slab and curb to be an 18 inch wide by 32 
inch deep beam reinforced with 3-#9 bars per the original plans. Using the capacity of this 
deeper section and the DC, DW and LL moments predicted at the outer slab edge, the operating 
rating factor at the curb increase to 1.01 for the HL-93 tandem3. 

To assess the capacity of the 20 inch thick portion of the slab near the thickened edge, the rating 
factor at a distance 6” in from the curb was computed to be 1.82 for the HL-93 tandem 
(operating)4. 

These results indicate that the bridge may have a sufficient rating capacity provided the 
MaineDOT is willing to accept the very specific and potentially un-conservative assumptions 
used in the single-lane rating analysis. Further, simply thickening the slab elements to account 
for the integral curb is a 2D simplification of the actual 3D bridge geometry, and the accuracy of 
this approach has not been verified. 

2.4 Penobscot No. 3297 

2.4.1 FE Analysis of Penobscot No. 3297 and Comparison with Field Data 

The Penobscot bridge consists of an original section constructed in the 1930s and widened 
portions at both edges. The original portion of the structure carries most of both striped lanes, 
and the newer sections on each side are primarily shoulder and/or sidewalk. Unlike the other 
widened structures tested and analyzed in this study, the original section of the slab was doweled 
and keyed to the new construction. This connection may not be fully effective in transferring 
transverse bending moments between the new and old portions of the structure, although it will 

                                                 
3 Wisscasset/ Woolwich No. 2577: Assumption set 3. 
4 Wisscasset/ Woolwich No. 2577: Assumption set 4 
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effectively transfer shear and could transfer significant longitudinal bending. Consistent with the 
MaineDOT load ratings and the uncertainty of load transfer across the joint, the initial FE models 
ignored the new sections of slab and conservatively treated the old portion of the slab as an 
independent structure. The general condition is shown in Figure 14, with the stelactites 
indicating the two joints between new/ old/ and new sections. 

   

Figure 14: Penobscot No. 3297 overall configuration with sidewalks and new/ old/ new underneath 

The original portion is on average 24.25 ft wide, and has an average thickness of gravel of 
approximately 17 in on top of the slab and below the asphalt wearing surface. The concrete 
compressive strength was assumed to be 4 ksi, which corresponds to an elastic modulus of 3600 
ksi, likely a reasonable or conservatively higher value. 

The finite-element analyses considered the loading caused by the crane moving north in the 
southbound lane, which produced the largest measured strain of approximately 36 με. Strains 
were computed assuming isotropic, thin plate theory, which accounts for the effect of both 
longitudinal and transverse bending moments.  

FE model longitudinal strains are reported at the locations of gauges 3060, 3061, 3062, 3072, 
3073 and 3074 in Figure 15. The peak model-predicted strain of about 69 με occurred at gauge 
3060, which was located nearest the west edge of the slab. Strains tended to steadily decrease 
across the slab width, with the minimum strain occurring at gauge 3074, which was located 
closest to the east edge of the slab and furthest away from the applied load. These trends are 
consistent with observed strains. 
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Figure 15: Finite‐element predicted strains for Penobscot No. 3297 

Table 2 reports peak measured and model-predicted strains, along with the ratio εc/εT. The value 
of εc/εT  is quite consistent, ranging from 1.70 to 2.28, and indicates conservatism in the FE 
model. One driver of this conservatism is likely the presence of an integral curb supported by the 
newer, approximately 5.4 foot wide section of slab that is keyed and doweled to the older 
portion. A second cause of conservatism is the significant thickness of fill present under the 
asphalt, which will tend to spread the wheel load distribution over a wider area of the slab. 
Finally, the plans call for a concrete wearing surface on the original structure, which was left in 
place during the widening. 

Table 2: Peak measured and model‐predicted strains for Penobscot No. 3297 

Gauge Location Peak εT (με) Peak εc (με) εc/εT 
3060 36.2 69.2 1.91 
3061 35.1 59.8 1.70 
3062 28.9 55.2 1.91 
3072 25.7 45.8 1.78 
3073 17.2 39.2 2.28 
3074 15.9 31.7 2.00 
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2.4.2 Revised Load Rating for Penobscot No. 3297 

The moment produced with the single crane was approximately 0.66 times that which would be 
produced by an HL-93 loading including impact and the multiple presence factor of 1.2. This 
value is less than 0.7, and given the uncertainty of extrapolating measured strains to higher loads, 
the AASHTO MBE recommends against increasing computed rating factors using the measured 
strains. 

However, the measured strains are quite low. Further, the significant compressive strains 
measured during the load tests in gauges 3067 and 3071, located at the top of the curbs indicate 
that the doweled and keyed joints between the original and widened portions of the slab do result 
in the slab behaving more like a single unit, and the new, widened portions and curbs were 
mobilized during live loading. Finally, the existing concrete wearing surface on the older 
structure, with a thickness tapering from 3 inches at the curb to 5 inches at the roadway crown, 
may increase the effective slab thickness. 

In light of these observations, an independent load rating was conducted by the University of 
Maine using SlabRate given the following assumptions: 

1. Weights, slab dimensions, and wearing surface loads were estimated per the widening plans. 
The slab span was taken as the clear span of 20 feet. 

2. The structure was assumed to be the full 40.67 feet wide with two 12 foot lanes and 6.33 foot 
wide sidewalk sections on each side, which is equivalent to assuming that the doweled, keyed 
joint fully transferred all moment and shear. 

3. Wheel loads were allowed within two feet from the sidewalk edge (8.333 ft from the slab 
edge). 

4. The slab thickness was taken as the structural thickness of 16 inches plus the 3 inch wearing 
surface at the edge of the original slab for a total of 19 inches. 

5. An average thickness of fill of 17 inches weighing 140 pcf was assumed to exist between the 
curbs along with 3 inches of asphalt at 145 pcf. The curb weight was taken as 667 lb/lf for 
the cast concrete, and the railing was assumed as 200 lb/lf. 

6. The sidewalk weights were added as separate line loads assuming 30 in deep by 60 in wide 
fill sections with a 3 in thick by 60 in wide asphalt wearing surfaces. 

7. The stiffness of the thickened curbs was conservatively not accounted for in the analysis. 
8. The reinforcing was 1.8 in2/ft per the original plans, with a yield strength of 33 ksi. 
9. The wheel loads were distributed over 27 inch long by 37 inch wide patches, a 17 inch 

increase in the normal 10 inch by 20 inch dimension specified by AASHTO to account for 
the distribution of load through the fill. 

Given these assumptions, the operating rating factors for two lanes of HL-93 loading is 1.345. 
This value is the minimum that occurs at mid-span of the original slab near the edge of the 

                                                 
5 Penobscot No. 3297: Assumption set 1. 
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sidewalk (node 207 in the finite-element model), and was accessed from the SlabRate results 
independently of the user interface. It is important to note that the widened portions of the slab 
are 16 inches thick with no wearing surface, which is not consistent with the assumption of a 19 
inch thick slab. However, this reduced thickness is compensated for by the larger amount of 
reinforcing (2 in2/ft) and higher grade of reinforcing (Gr 60) in the newer, widened portions. A 
parallel SlabRate analysis assuming a 16 inch slab with reinforcing corresponding to the newer 
construction indicates that the widened portions has an HL-93 operating rating factor of 2.436. 

These rating factors indicate that the Penobscot Bridge No 3297 may be structurally sufficient. 
However, the single most important assumption leading to an increase in rating factors is that the 
effective slab thickness is 19 inches, i.e. that the wearing surface called out on the plans can be 
added to the structural thickness of 16 inches. Indeed, a parallel rating analysis assuming a slab 
thickness of 16 inches gives an operating rating factor of 0.76 for two lanes of HL-93 loading7. 
Given that the wearing surface cannot be inspected, and that demolition of the original curbs is 
called for on the as-built plans near the edge of the original slab, this assumption could be 
unconservative. We recommend that the MaineDOT carefully consider all assumptions inherent 
in the rating analysis described here when assessing the capacity of this structure. 

2.5 FE Analysis of Smyrna No. 2250 and Comparison with Field Data 

The Smyrna bridge consists of an original section and widened portions at both edges. The 
original portion of the structure represents approximately 70% of the roadway width between the 
curbs, and only the new portion on the north (upstream) side carries significant traffic. The 
general condition is shown in Figure 16 focused on a joint between old and new slabs. 

 

Figure 16: Smyrna No. 2250 underside general condition with joint detail 

                                                 
6 Penobscot No. 3297: Assumption set 2. 
7 Penobscot No. 3297: Assumption set 3. 
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During the live load tests, the truck was consistently driven close to each curb. As a result, the 
original portion of the slab was not loaded by both wheel lines of the truck. The widened portion 
on the north side, however, did carry one full lane of traffic. The truck positioning is reflected in 
the measured strains, for which the maximum value was 43.9 με in the northern, widened portion 
and 25.3 με in the thicker, more lightly loaded original portion of the slab. 

Because of this, the analysis focused on the new portion of the structure. The clear span of 20 
feet was used in the analyses, along with the average width of 17 ft 8 inches. The slab thickness 
was taken as 16.5 inches as specified on the plans. As for all other structures, the slab was 
considered uncracked, and a 20 x 20 finite-element mesh was used. Figure 17 shows the model-
predicted strains at the four gauges located nearest the truck wheel lines on the bottom of the 
slab, and Table 3 summarizes peak measured and model-predicted strains at the four gage 
locations. 

 

Figure 17: Finite‐element predicted strains for Smyrna No. 2250 
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Table 3: Peak measured and model‐predicted strains for Smyrna No. 2250 

Gauge Location Peak εT (με) Peak εc (με) εc/εT 
3057 23.9 87.4 3.66 
3065 27.0 84.8 3.14 
3066 43.9 88.7 2.02 
3067 25.5 86.6 3.39 

 

Three of the four gauges had very similar strains, but at gauge 3066 the measured strain was 
significantly larger. This contrasts with the finite-element model predictions, which are similar at 
all gauge locations. The minimum ratio of computed to predicted strain is 2.02 at the location of 
gauge 3066. However, the maximum moment produced by the truck was less than 0.7 times an 
HL-93 live load with impact, and therefore the measured strains cannot be used directly to revise 
the rating factor. 

A.1 Weld No. 5361 

A.1.1 Instrumentation 

 

Figure 18: Weld No. 5361 sensor layout 
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A.1.2 Loading 

 

Figure 19: Weld No. 5361 crane layout 
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A.1.3 Representative Data Plots 

 

Figure 20: Weld No. 5361 test 4, 1st pass 

 

Figure 21: Weld No. 5361 test 5, 2nd pass 
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Figure 22: Weld No. 5361 test 6, 3rd pass 

 

Figure 23: Weld No. 5361 test 7, 4th pass 
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A.2 West Paris No. 2582 

A.2.1 Instrumentation 

 

Figure 24: West Paris No. 2582 sensor layout 
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A.2.2 Loading 

 

Figure 25: West Paris No. 2582 crane layout 
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A.2.3 Representative Data Plots 

 

Figure 26: West Paris No. 2582, test 8 

 

Figure 27: West Paris No. 2582, test 10 
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Figure 28: West Paris No. 2582, test 11 

 

Figure 29: West Paris No. 2582, test 12 
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A.3 Woolwich No. 2577 

A.3.1 Instrumentation 

 

Figure 30: Woolwich No. 2577 sensor layout 



 Instrumentation During Live Load Testing and Load Rating of Five Reinforced Concrete Slab Bridges 
  UMaine Composites Center Report 16-23-1332.3 

FM-PR-08(07)   Page 33 of 44 

A.3.2 Loading 

 

Figure 31: Woolwich No. 2577 crane layout 
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A.3.3 Representative Data Plots 

 

Figure 32: Woolwich No. 2577, test 7 

 

Figure 33: Woolwich No. 2577, test 8 
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Figure 34: Woolwich No. 2577, test 9 

 

Figure 35: Woolwich No. 2577, test 11 
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Figure 36: Woolwich No. 2577, test 13 

 

Figure 37: Woolwich No. 2577, test 14 
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A.4 Penobscot No. 3297 

A.4.1 Instrumentation 

 

Figure 38: Penobscot No. 3297 sensor layout 
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A.4.2 Loading 

 

Figure 39: Penobscot No. 3297 crane layout 
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A.4.3 Representative Data Plots 

 

Figure 40: Penobscot No. 3297, test 4 

 

Figure 41: Penobscot No. 3297, test 5 
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Figure 42: Penobscot No. 3297, test 6 

 

Figure 43: Penobscot No. 3297, test 8 
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A.5 Smyrna No. 2250 

A.5.1 Instrumentation 

 

Figure 44: Smyrna No. 2250 sensor layout 
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A.5.2 Loading 

 

Figure 45: Symyrna No. 2250 crane layout 
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A.5.3 Representative Data Plots 

 

Figure 46: Smyrna 2250, test 11 

 

Figure 47: Smyrna No. 2250, test 12 
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Figure 48: Smyrna No. 2250, test 13 

 

Figure 49: Smyrna No. 2250, test 14 


